Announcements

Analyze All Your High-Throughput Bioreactor Data in the Cloud

LinkedIN_black.svg Twitter_black.svg

Announcing the launch of additional graphing and data visualization features on our website.

 

Proteus GIF3

 

Culture Biosciences empowers customers to optimize and scale their bioprocesses faster by making biomanufacturing R&D a digital experience. Our cloud bioreactors enable scientists to not only design and monitor their bioreactor experiments from anywhere, but to visualize their data and generate insights with ease. 

We are thrilled to announce the launch of our new graphing tool, featuring:

Comparing Between Experiments:

All of the data you generate with Culture is organized into experiments (batches of multiple bioreactors run at one time), and now you can graphically compare data between different experiments with a click. You can monitor your ongoing process in real-time compared against a control process you’ve run in the past, or identify trends by viewing the performance of different run conditions or strains over time. 

Custom Overlays of Process Data:

When visualizing data to better understand your bioprocess, you can choose any process parameters to view overlayed with each other. More clearly view interactions between process parameters like agitation, aeration, and dissolved oxygen (DO), or see how different pH or temperature conditions affect the accumulation of a product or metabolite. 

Group Runs by Condition: 

Now you can sort, filter, and graph your data based on experimental run conditions like strain, seed or batch media, or inoculation OD. Parallel table and graph views enable you to more easily toggle runs or groups of runs to create custom graphs and quickly correlate run conditions with results. 

 

Working with Culture, you no longer need to collect disparate Excel files to compare data from different experiments. Do all of your graphing and analysis live on our cloud platform, saving you time and helping you confidently make better decisions faster. Check out the example use case below, and fill out the form at the bottom of the page for a demo of our cloud console. 

Example Use Case: 

After completing an experiment and identifying the best-performing run, you dig in deeper by overlaying multiple conditions onto a graph:

Screen Shot 2020-02-22 at 12.31.21 PMFigure 1: In the above graph the relevant process parameters are easily seen in a condensed view.

 

To verify that the performance observed in this particular bioreactor run is due to the unique conditions tested, you then compare the control process run from this experiment to a control process run from a previous experiment.

 

graph-for-2-runs-our-mmoFigure 2: Oxygen uptake rate (OUR) and optical density (OD) for the control process in this experiment compared to the same control run in a previous experiment, done the week prior. 

 

Confident that the improved performance is due to the run conditions tested, you want to learn more by comparing this condition to another condition that performed less well. First, you use the table view to group your runs by condition, and then graph the two conditions against each other. 


Proteus Spotlight

Proteus Spotlight-6Figure 3: A series of images demonstrating the flow of the table tool. Using the table view, you create groups of runs by unique condition. Note that the conditions were run in triplicate. 

 

odFigure 4: The two groups of conditions (in triplicate), and the resulting OD from each. Note that each condition is grouped in a similar color scheme: the higher OD condition in red/purple/pink, and the lower OD condition in blue/yellow/green. 

 

Next, you want to validate that the difference in growth between the two conditions was in fact a result of different metabolism. You layer OUR on top of the OD graph for these two conditions.


od ourFigure 5: When comparing OD to OUR, it is clear that both the OD and the OUR are unique for each condition.  

 

Finally, looking for insight into why the higher-OD condition grew better, you layer on additional metrics. When overlaying acetate sample data, it is clear that the higher OD condition had almost no acetate accumulation, whereas the lower OD condition accumulated substantial acetate later into the run. 


od acetateFigure 6: The higher OD condition (red/pink/purple) had lower acetate accumulation compared to the lower OD condition (blue/yellow/green). 

 

Sign Up for a Demo